
PSR-7 and Action-Domain-Responder

@pmjones on gab.com

http://paul-m-jones.com

pmjones.io/adr

http://gab.com
http://paul-m-jones.com
http://pmjones.io/adr

About Me
• 8 years USAF Intelligence

• BASIC in 1983, PHP since 1999

• Jr. Developer, VP Engineering

• Aura, Zend FW, Relay, Atlas

• PHP-FIG Founding Member: 
PSR-1, PSR-2, PSR-4

• MLAPHP (http://mlaphp.com)

http://mlaphp.com

Overview

• PSR-7 "HTTP Messages" history and implementation

• (Re-)introduction to Action-Domain-Responder

• Using PSR-7 in ADR scenarios

PSR-7

Origins and Initial Draft
• Different projects in FIG have different HTTP objects

• Find common use cases, codify a standards recommendation

• Initial draft in Jan 2014 as client Request/Response interfaces

• Michael Dowling of Guzzle; referenced Buzz and Requests

• https://github.com/php-fig/fig-standards/pull/244/files

https://github.com/php-fig/fig-standards/pull/244/files

Initial Description

• Model of HTTP messages, with Request and Response interfaces

• Client, not server : PHP sends request and gets back response

• Set and get headers; PHP stream as message body; no URI interface

• Fully mutable: "immutable messages ... would not reflect what is
currently being used by a majority of PHP projects."

Initial Drafter Departs

• Dowling steps down Aug 2014 (8 months)

• Lack of time and motivation

• Unconvinced of "one right way" for an interoperable interface

New Drafter Volunteers
• MWOP of Zend Framework adopts the proposal Sep 2014

• Has one right way in mind: Sencha Connect (later Expresss):

• "The reason I wanted to port Connect is this: an application consists of
middleware. Each middleware is a callback that accepts a request,
response, and a callback called next."

• function ($request, $response, $next)

Revised Draft
• Sep 2014 to May 2015

• Expands to include ServerRequest: $_GET, $_POST, $_ENV, etc.

• Solves long-standing omission in PHP

• Requires "immutability"

• Entirely unlike any member project implementations

Psr\Http\Message

• MessageInterface

• RequestInterface

• ResponseInterface

• ServerRequestInterface

• StreamInterface

• UploadedFileInterface

• UriInterface

• http://www.php-fig.org/psr/psr-7/

http://www.php-fig.org/psr/psr-7/

Immutability

• Cannot change the values inside an object

• Can get back a new instance of the object with changed values

• Isolates state, prevents "spooky action at a distance"

// mutable
$object->setFoo("new value");

// immutable
$newObject = $object->withFoo("new value");

ServerRequestInterface

/**
 * Return an instance with the specified body parameters.
 *
 * This method MUST be implemented in such a way as to retain the
 * immutability of the message, and MUST return an instance that has the
 * updated body parameters.
 *
 * @param null|array|object $data The deserialized body data. This will
 * typically be in an array or object.
 * @return self
 * @throws \InvalidArgumentException if an unsupported argument type is
 * provided.
 */
public function withParsedBody($data);

Guzzle & Zend Diactoros  
Implementations

public function withParsedBody($data)
{
 $new = clone $this;
 $new->parsedBody = $data;
 return $new;
}

Subverting "Immutability"
function one($request, $response, callable $next = 'two')
{
 // given `{"foo": "one"}`
 $request = $request->withParsedBody(json_decode($request->getBody()));
 echo $request->getParsedBody()->foo; // 'one'

 // invoke, and return from, next middleware
 $next($request, $response);

 // value has changed on same request!
 echo $request->getParsedBody()->foo; // 'two'
}

function two($request, $response, $next = null)
{
 $request->getParsedBody()->foo = 'two';
}

Quasi-Immutable
• You as the user must be careful to pass only immutable values

• Scalars and nulls; immutable objects; arrays with only immutables

• Cannot depend on enforcement of immutability elsewhere

• Even if fixed, message body Streams are still mutable

• http://paul-m-jones.com/archives/6400

http://paul-m-jones.com/archives/6400

Is PSR-7 Fatally Flawed?

• "It depends." Doesn't deliver on a core promise, but do you care?

• psr/http-message has13M installs (791 deps) ... 12M are Guzzle: 
https://packagist.org/providers/psr/http-message-implementation

• symfony/http-foundation: 22.7M installs, 1433 dependents (Jul 2011)

• Be aware of its imperfections. Pick your tradeoffs.

https://packagist.org/providers/psr/http-message-implementation

Action-Domain-Responder

A Brief Introduction

• "Model-View-Controller" has suffered from semantic diffusion

• A user interface pattern, not itself an application architecture

• Originated as in-memory, client-side, event-oriented

• Server-side "MVC" is over-the-network, request/response-oriented

Smalltalk-80 MVC Collaborations
• Controller receives keyboard/mouse input

events from User

• Controller notifies View and Model,
respectively

• View and Model notify each other for updates

• View updates are rendered on the screen

• Hierarchical collection of interrelated MVC
triads for each screen element (event system)

Sun Model 2 Collaborations

• From event-driven to request/response (pages)

• No more messaging interactions between triads

• One collected set of interactions delivered

Toward A Web-Specific UI Pattern
• Stop using in-memory desktop GUI patterns as server patterns

• Entirely new name to break the association with “MVC”

• Remember we are in a client/server (request/response) environment

• Use existing server-side “MVC” as a basis

• Refine the components and collaborations toward better practices

Refining the “Model” to “Domain”

• The “Domain” has essentially identical responsibilities

• Reminiscent of “Domain Logic”: Transaction Script, Domain Model,
Table Module, Service Layer

• Reminiscent of “Domain Driven Design”: Repository, App Service

• Usually think of a View system as templates (screen elements)

• Client receives HTTP response of both body and headers

• This means the View in server-based MVC is not the template

• The View in server-based MVC is the Response

Refining the “View” to “Responder”

Intermingled Presentation Logic

• Template Views generally build HTTP body values

• Remaining Controller logic manipulates HTTP header values

• Presentation logic is mixed between Views and Controllers

• Need a layer that is completely in charge of building the Response

“Responder” For Presentation

• Responder layer handles setting headers, status, etc

• Additionally uses templates for setting body content

• Invoke a Responder for presentation of Response

• Remove Response presentation from all Controller action methods

Refining the “Controller” To “Action”

• Takes input, sends to domain, gets back payload, sends to Responder

• Move from Controller with index(), create(), read(), etc. …

• … toward one class per Action: 
IndexAction, CreateAction, ReadAction, etc.

Components

• Domain is the logic to manipulate the domain, session, application, and
environment data, modifying state and persistence as needed.

• Responder is the logic to build an HTTP response or response description. It
deals with body content, templates and views, headers and cookies, status codes,
and so on.

• Action is the logic that connects the Domain and Responder. It uses the request
input to interact with the Domain, and passes the Domain output to the Responder.

Collaborations

• Action feeds input from HTTP
request to a Domain layer

• Action feeds payload from
Domain layer to a Responder

• Responder builds the HTTP
response headers and body

Action

ResponderDomain

Request

Response

Moving Towards ADR
• ADR is a refinement of MVC, not a brand-new invention

• You're probably already almost doing ADR

• Change from Template to Responder, and move header work

• Move business logic from "Controller" (Action) to Domain

• Remaining Action code is minimalist, trivial

ADR Frameworks

• Radar (pmjones): <http://github.com/radarphp/Radar.Project>  
Aura.Di, Relay, Arbiter, Aura.Payload

• Equip (shadowhand): <https://github.com/equip/framework>  
Auryn, Relay, Equip Action, Equip Payload

• Adroit (shochdoerfer): <https://github.com/bitExpert/adroit> (PHP 7!) 
Container-Interop, Zend Stratigility, Adroit Action, Adroit Payload

http://github.com/radarphp/Radar.Project
https://github.com/equip/framework
https://github.com/bitExpert/adroit

ADR Considerations and PSR-7

Topics

• Middleware

• Actions

• Responders

• Content Negotiation

• Authentication/Authorization

• Sessions

"Where does it go in 'MVC' ? "

Middleware (1/2)

• Premise: Middleware is a user interface decoration system

• The UI is the HTTP request (input) and HTTP response (output)

• Middleware is not for your Domain work

• Middleware is a path in to, and out of, the core Domain

Middleware (2/2)

• Middleware might be an Action, or might be a Responder

• More likely that middleware invokes an Action to get a Response

• It should never be a Domain element; Domain is not UI.

• Interacting with storage or service? Not "user interface." Domain!

Actions
• Use PSR-7 ServerRequest as input element

• Marshal inputs into a non-HTTP structure and pass to Domain

• Validation? Not "user interface" -- Domain!

• Eventually, Actions end up very similar

• <https://github.com/arbiterphp/Arbiter.Arbiter>

https://github.com/arbiterphp/Arbiter.Arbiter

Naive Generic Action as Middleware
function action($request, $response, callable $next = null)
{
 $input = array_replace(
 (array) $request->getQueryParams(),
 (array) $request->getParsedBody(),
 (array) $request->getUploadedFiles(),
 (array) $request->getCookieParams(),
 (array) $request->getAttributes()
);

 $domainCallable = $request->getAttribute('adr:domain');
 $payload = $domainCallable($input);

 $responderCallable = $request->getAttribute('adr:responder');
 return $responderCallable($request, $response, $payload);
}

Responders
• Use PSR-7 Response as the output element

• Need helper for cookies: 
https://github.com/dflydev/dflydev-fig-cookies

• Need helpers for complex headers (Cache-Control)

• Lambda? Need factory for Response object (Stream) 
https://github.com/http-interop/http-factory (PSR-17)

https://github.com/dflydev/dflydev-fig-cookies
https://github.com/http-interop/http-factory

Code Example: 
Naive JSON Responder

Content Negotiation: Where Does It Go?

• Where does it go in ADR? (Where would it go in MVC?)

• Output formatting -- Responder!

• Parse $request->getHeader('Accept') and match to available types

• Build and send acceptable type, or send "406 Not Acceptable"

Content Negotiation: Routing Issues

• Inefficient to wait until Responder

• Examine "Accept" header in router to see if available type is present

• Proceed if q-value is non-zero, or respond early with "406"

• Aura.Router allows routing on Accept header: 
https://github.com/auraphp/Aura.Router/

https://github.com/auraphp/Aura.Router/

Authentication: Where Does It Go?
• A little controversial

• Is Authentication a user interface task?

• If it interacts with storage, it is "Domain"

• Do authentication work in Domain, not Action or Responder

• Not a middleware task

Authentication: Routing Issues

• What about routing based on authenticated/anonymous?

• Examine expected header or body element (middleware or router)

• If present, presume authenticated and route appropriately

• Do real authentication and authorization checks in Domain

Sessions

• Very controversial

• What do session_start() et al. do?

• Reads/writes cookie direct to output, a la setcookie()

• Reads/writes to file, memcache, etc.

Sessions: Combined Concerns

• Reading cookie values is Action work

• Interacting with storage is Domain work

• Sending cookies is Responder work

• Cannot intercept or inspect cookies as part of Response

Option 1: Sessions in Middleware

• Middleware to start & commit session

• In Action, pass &$_SESSION as input to Domain

• Domain cannot do session work (login? logout? regenerate ID?)

• Still cannot see cookies in Response object

Option 2: Semi-Automatic Sessions

• Disable reading and writing of session cookies

• Read session cookie as input in Action, pass to Domain

• Use session_*() in the Domain, return session ID in payload

• Write session cookie in Responder

Config

ini_set('session.use_cookies', false);
ini_set('session.use_only_cookies', true);
ini_set('session.use_trans_sid', false);

Action

$cookies = $request->getCookieParams();
$input['sessionId'] = $cookies[session_name()] ?? null;
// ...
$payload = $domain($input);
return $responder($request, $response, $payload);

Domain

session_id($input['sessionId']);
session_start();

// ...

session_regenerate_id()
session_write_close();

// ...

$payload['sessionId'] = session_id();
return $payload;

Responder
$sessionName = session_name();
$newId = $payload->getOutput()['sessionId'];

$oldId = '';
$cookies = $request->getCookieParams();
if (! empty($cookies[$sessionName])) {
 $oldId = $cookies[$sessionName];
}

if ($newId !== $oldId) {
 // domain called session_start() or session_regenerate_id(),
 // so send a cookie with the new id
 $response = $response->withAddedHeader(
 'Set-Cookie',
 $this->getSessionCookie($sessionName, $newId) // builds cookie header
);
}

Consequences

• ADR concerns are now separated

• Cookies available in Response

• session_cache_expire() & session_cache_limiter() ... ?

• PSR-7 and Session Cookies  
http://paul-m-jones.com/archives/6310

http://paul-m-jones.com/archives/6310

Conclusion
• PSR-7 and ADR

• PSR-7 in Actions and Responders

• Content Negotiation with ADR

• Authentication with ADR

• Sessions with PSR-7 and ADR

Thanks!

• pmjones.io/adr (ADR Paper)

• github.com/radarphp/Radar.Project (ADR “framework”)

• paul-m-jones.com

• @pmjones on gab.ai

http://pmjones.io/adr
http://github.com/radarphp/Radar.Project
http://paul-m-jones.com/

